Journal of Organometallic Chemistry, 187 (1980) 277–285 © Elsevier Sequoia S.A., Lausanne — Printed in The Netherlands

REACTION DES PHOSPHORINES AVEC LES CYMANTRENES. SYNTHESE D'UN COMPLEXE SANDWICH n^5 -CYCLOPENTADIENYL - n^6 -PHOSPHORINE-MANGANESE

François NIEF, Claude CHARRIER, François MATHEY et Michel SIMALTY Equipe CNRS-IRCHA, 2-8 rue Henry Dunant, BP 28, 94320 Thiais (France)

(Recu le 26 octobre 1979)

<u>Summary</u> : σ -Phosphorin-manganese complexes are easily obtained from RCpMn(CO)₂ (THF) and phosphorins. Photolysis of CpMn(CO)₂ (triphenylphosphorin) yields a sandwich complex : (η^5 -cyclopentadienyl)(η^6 -triphenylphosphorin) manganese , which displays a particularly high field resonance in its ³¹P NMR spectrum. By photolysis of RCpMn(CO)₂(4,5-dimethyl 2-phenylphosphorin), two additionnal products are obtained, to one of which the structure of a σ - π complex has been assigned.

<u>Résumé</u> : Les complexes σ -phosphorine-manganèse sont aisément obtenus à partir de RCpMn(CO)₂ (THF) et des phosphorines correspondantes. La photolyse du complexe CpMn(CO)₂ (triphénylphosphorine) conduit à un complexe sandwich : le (η^5 -cyclopentadiényl)(η^6 -triphénylphosphorine) manganèse, dont le signal en RNM ³¹P se situe à champ particulièrement fort. La photolyse des complexes RCpMn(CO)₂ (diméthyl-4,5 phényl-2 phosphorine) fournit en outre deux produits ; nous avons attribué la structure d'un complexe σ - π à l'un d'entre eux.

INTRODUCTION

Les données de la littérature indiquent que les λ^3 -phosphorines peuvent jouer le rôle de coordinats à 2,6 ou 8 électrons pour donner respectivement des complexes σ , π ou σ - π des types représentés dans le schéma I.

Schéma I : Différents types de coordination possibles d'une phosphorine

Les études ont êté conduites avec la phosphorine non substituée [1,2], la cyclohexyl-4 phosphorine [3] et la triphényl-2,4,6 phosphorine [4-7]. Des différences très notables de comportement ont été observées entre ces trois coordinats. Si dans les trois cas de nombreux complexes o ont pu être préparés, seule la cyclohexyl-4 phosphorine [3] a permis jusqu'à présent l'obtention de complexes $\sigma - \pi \left[H = Cr(CO)_5, Mo(CO)_5, W(CO)_5; M' = Cr(CO)_3, Mo(CO)_3 \right]$ et seule la triphényl-2,4,6 phosphorine [4] l'obtention de complexes π [M' = Cr(CO)3, Mo(CO)3]. Il est d'ailleurs intéressant de remarquer que le schéme de substitution a également un grand rôle dans la possibilité d'obtention des complexes π de pyridines [8-10]. Au départ de cette étude, nous avions donc un double objectif : nous voulions tout d'abord étendre la famille des complexes n-aromatiques de phosphorines dont l'intérêt théorique et synthétique est considérable, en préparant un analogue phosphoré du complexe sandwich (n⁵-cyclopentadienyl)(n⁶-benzène)manganèse [11] ; le comportement des phosphorines vis à vis des métaux de transition semblant beaucoup dépendre du schéma de substitution, nous voulions ensuite étudier l'aptitude complexante d'une nouvelle phosphorine préparée au laboratoire, la phény1-2 diméthy1-4,5 phosphorine [12]. Pour ce faire, nous avons donc étudié la réaction de la triphény1-2,4,6 phosphorine L₁ (particulièrement apte à donner des complexes π) et de la phényl-2 diméthyl-4,5 phosphorine L2 avec le cymantrène et méthylcymantrène.

RESULTATS

Ces phosphorines déplacent facilement le THF des complexes (n⁵-cyclopentadiényl)manganèse dicarbonyl (THF) pour donner avec un bon rendement les complexes correspondants I et II :

Ces complexes ont été entièrement caractérisés et leurs données spectrales sont résumées dans le tableau I. En RMN, on remarque un blindage caractéristique des protons H_{CL} et Hg des coordinats complexés par rapport à ceux des coordinats libres, et, à l'inverse, un déblindage significatif du phosphore. Ces effets sont beaucoup plus nets que dans les complexes o de phosphorine déjà décrits [5]. On peut noter aussi une égalisation des constantes de couplage $J(P-H_{\Omega})$ et $J(P-H_{\beta})$ dans les complexes o par rapport aux coordinats libres L1 ou L2. Ce phénomène semble caractéristique d'un changement de coordination de l'atome de phosphore dans la phosphorine [1]. On observe également un couplage entre les protons du cyclopentadienyle et le phosphore, comme dans le cas d'autres complexes du même type, par exemple CpMn(CO)2PPh3 [13]. Les données IR confirment que L2 est plus donneur d'électrons que L1. Les spectres de masse de ces complexes présentent un pic intense à m/e = M-2CO dont la masse est celle des complexes π recherchés. Toutefois, la décomposition thermique des complexes Ia et IIb, à sec sous vide ou au reflux de la décaline, ne fournit que les phosphorines libres L1 et L2. En revanche, la photolyse de la nous a permis d'obtenir le complexe sandwich original III.

Ce complexe III a été pleinement caractérisé par analyse élémentaire et spectroscopie et ses données spectrales figurent dans le tableau I. En RMN, les observations les plus significatives concernent la redécroissance du couplage $J(P-H\beta)$ et le blindage extraordinaire du phosphore par rapport à Ia. Tout cela est en parfait accord avec les deux complexes π de L₁ précédemment décrits [4]. On remarque simplement que le signal du phosphore se déplace de 228 ppm à champ fort quand on passe de L₁ à III, ce qui est tout à fait exceptionnel. On notera enfin qu'il n'y a plus de couplage entre les protons du Cp et le

Composé		<u> </u>	, 31 b	C				
	На δ[ЈН-Р]	нβ δ[лн−₽]	Me(L)	MeC5H4	Ср б[лн-Р]		νC=0(cm ⁻¹)	
L1 ^d		8,10 [6]				178		
L2 ^e	8,41 [39]	7,80 [5,5]	2,32- 2,35			181		
Ia		7,63 [16,5]			3,80 [1,7]	243	1964	1893
Ib		7,73 [17]		1,65	3,87 ⁸	246	1950	1888
IIa	8,10 [23]	7,18 ^É	1,92		3,93 [2]	239	1949	1886
IIb	7,93 [23]	7,03 ^f	1,88	۱,53	3,75 ⁸	234	1947	1883
III		6,05 [4,5]			3,50	50		
VI	5,09 [12] ^h	4,60 ^{h,i}	1,96 2,26	1,60- 1,74	3,78 ^g	74	1935	1869

Tableau I : Données spectrales des complexes isolés et de L1 et L2

a) δ en ppm, J en Hz, complexes en solution dans C₆D₆ sauf Ib (CDCl3), TMS interne.

b) référence externe H3PO4 85% ; δ positif à champ faible

c) complexe en solution dans CHCl3

d) voir référence [14]

e) voir référence [12]

f) protons en partie masqués par ceux du phényle

g) centre du multiplet

h) attribution pouvant être inversée entre Ha et Hß

i) singulet large.

phosphore et que le signal ³¹P de III, à température ambiante, est fin contrairement à ceux des composés I et II qui sont élargis par relaxation quadrupolaire avec le ⁵⁵Mn (spin 5/2) ; tout se passe comme si il n'y avait plus de liaison P-Mn dans III.

Lorsque IIa est photolysé de façon analogue à Ia (durée 2,5 h), on obtient des traces de deux complexes nouveaux IV et V partiellement purifiés par chromatographie. Nous avons attribué à IV la formule d'un complexe π sur la base de son spectre RMN du proton : [IV : δ = 3,65 (s, 5H, Cp) ; 4,31 (d, ²J(H-P) 37 Hz, 1H, H α) ; 5,35 (d, ³J(P-H) 4,5 Hz, 1H, H β) ppm] et à V celle d'un complexe σ sur la base de son spectre de masse.

D'un autre côté si, dans la préparation de IIb, on continue à irradier aux le mélange réactionnel après addition de L2 tout en portant le THF au U.V. reflux, on obtient, à côté de IIb, des traces de deux nouveaux complexes VI et VII. Nous avons attribué à VI la formule d'un complexe d-n sur la base de ses données spectrales (voir tableau I). En RMN du proton, les données les plus marquantes sont le déplacement à champ fort des protons Ha et HB, ce qui confirme la n-complexation de L2, et la présence de deux coordinats méthylcyclopentadiényles. La RMN du phosphore montre un pic élargi par relaxation quadrupolaire avec le manganèse, à une position intermédiaire entre celles des complexes σ I-II et celle du complexe π III, ce qui est parfaitement en accord avec une complexation o-n de L2. Les données I.R. semblent indiquer que le pouvoir donneur de L₂ augmente lorsqu'il est π -complexé par le motif MeC5H4Mn. La spectrométrie de masse confirme la structure proposée pour VI. Nous avons attribué à VII la formule d'un complexe o sur la base de son spectre de masse. Finalement, l'ensemble des résultats obtenus semblent indiquer que L2 a un comportement intermédiaire entre ceux de L1 et de la cyclohexyl-4 phosphorine.

PARTIE EXPERIMENTALE

Toutes les synthèses et isolements des produits ont été effectués sous atrosphère d'Argon avec des solvants désaérés. Les irradiations U.V. ont été effectuées avec une lampe à vapeur de mercure moyenne pression Hanovia de 100 W. Les spectres I.R. ont été enregistrés avec un appareil Perkin-Elmer modèle 297, les spectres de masse avec un appareil AEI MS-30 à 70 eV, les spectres de RMN sur un appareil Perkin-Elmer R24-A à 60 MHz pour le proton, et sur un appareil Bruker WP 90 fonctionnant en mode "transformée de fourier" avec découplage des protons à 36,447 MHz pour le phosphore. Les points de fusion ont été pris avec un microscope à platine chauffante Leitz et ne sont pas corrigés. Les analyses élémentaires ont été effectuées par le service central de nicroanalyse du CNRS.

- Mode opératoire général de synthèse des complexes o (voir tableau II)

- Ia : (n⁵-cyclopentadiényl)[n²-1,1(triphényl-2,4,6 phosphorine)]dicarbonyl
 manganèse
- Ib : (η⁵-méthylcyclopentadiényl([η²-1,1(triphényl-2,4,6 phosphorine)] dicarbonyl manganèse
- IIa : (η⁵-cyclopentadiényl) [η²-1,1(diméthyl-4,5 phényl-2 phosphorine)] dicarbonyl manganèse
- IIb : $(\eta^5 m \acute{e}thylcyclopentadiényl) [\eta^2 1, 1(dim \acute{e}thyl 4, 5 phényl 2 phosphorine)]$ dicarbonyl manganèse

On irradie le cymantrène ou le méthylcymantrène en solution dans 250 ml de THF anhydre pendant l h à température ambiante. L'irradiation est alors coupée et on ajoute L_1 ou L_2 . Après l h d'agitation, le solvant est évaporé et le résidu chromatographé sur gel de silice et élué avec un mélange Hexane/Benzène 80/20. Les complexes Ia et IIa cristallisent dans le pentane.

- Synthèse du complexe π III : (η^5 -cyclopentadiényl($[\eta^6 1-6(triphényl-2,4,6 phosphorine)]$ manganèse.

l g (2 mM) de complexe σ Ia est dissous dans l litre de cyclohexane et irradié pendant 5 h 30 mm, temps au bout duquel Ia a totalement disparu (contrôlé par chromatographie sur couche mince). Le filtrat est évaporé à sec sous pression réduite à 20°C et le résidu chromatographié sur gel de silice. Une bande rouge est éluée avec un mélange hexane/benzène 80/20. L'éluat est évaporé à sec sous vide à 20°C et III cristallise en ajoutant du pentane (160 mg). F 145-150 (déc.).

C H P Analyse C_{28H22}MnP Zcalc. 75,67 4,95 6,98 Ztr. 75,72 5,07 7,10 Masse M/e 444 (M⁺, 2Z) 324 (L⁺₁, 70Z) 120 (CpMn⁺, 100Z)

	Quantité de RCpMn(CO)3	Quantité de L _l ou L ₂	F	Analyse CZ HZ PZ	Masse
	mg (mM)	ng (nM)		(calc) trouvé Formule Brute	M/e (%)
Ia	410 (2)	650 (2)	175- 176	(72,00) (4,40) (6,20) 72,23 4,66 6,31 C ₃₀ H ₂₂ MnO ₂ P	500(6) 444(100) 324(44) 120(75)
IIa	300 (1,47)	200 (1)	138- 139	(63,83) (4,79) (8,24) 63,86 5,02 8,17 ^C 20 ^H 18 ^{MnO} 2 ^P	376(17) 320(100) 200(17) 120(75)
ΙЪ	1950 (9)	1480 (4,5)	_	(72,37) (4,66) (6,03) 71,72 5,01 5,92 C ₃₁ H ₂₄ MnO ₂ P	514(7) 458(100) 324(72) 134(72)
ЦЬ	300 (1,37)	200 (1)	-	- С21 ^H 20 ^{MnO} 2P	390(10) 334(73) 134(100)

Tableau II : Synthèse des complexes o

Complexes IV : (n⁵-cyclopentadiényl) [n⁶ 1-6(diméthyl-4,5 phényl-2 phosphorine)] manganèse et V : (n⁵-cyclopentadiényl)bis [n² 1,1(diméthyl-4,5 phényl-2 phosphorine)] carbonyl manganèse.

200 mg de IIa sont dissous dans 250 ml de cyclohexane et cette solution est irradiée pendant 2 h, temps au bout duquel IIa a totalement disparu (vérifié par chromatographie sur couche mince). Le mélange réactionnel est évaporé à sec sous vide à 20°C et le résidu est chromatographié sur gel de silice (hexane/benzène 80/20). Le spectre RMN de la fraction de tête montre des bandes correspondant à L₂ ainsi que d'autres correspondant à un produit auquel on a attribué la structure IV (voir texte). La fraction de queue évaporée à sec sous courant d'Argon dépose quelques cristaux d'un produit auquel nous avons attribué la structure V.

I.R. C=0 : 1835 cm^{-1} (CHCl₃) Masse : M/e 548 (M⁺, 3%) 520 (M⁺CO, 1%) 320 (M⁺CO-L₂, 100%) 200 (L₂⁺, 80%). Complexe VI : [n⁵-méthylcyclopentadiényl] [n⁶ 1-6(n² 1,1{diméthyl-4,5 phényl-2 phosphorine}) (n⁵-méthylcyclopentadiényl)dicarbonyl manganèse]
 manganèse, et complexe VII : (n⁵-méthylcyclopentadiényl)bis[n² 1,1(diméthyl-4,5 phényl-2 phosphorine)] carbonyl manganèse.

550 mg de méthylcymantrène sont photolysés en solution dans 250 ml de THP pendant 1 h à température ambiante, puis on ajoute 250 mg de L2 et on porte à reflux pendant 1 h. On évapore le mélange réactionnel à sec sous vide et on chromatographie sur gel de silice. Cette dernière opération est effectuée dars une boîte à gants sous Argon. La première fraction éluée à l'hexane pur contient des traces de L2 et un produit jaune non identifié en quantité très faible. La deuxième fraction éluée avec hexane/benzène 90/10 contient 220 mg (502) de IIb. La troisième fraction éluée avec hexane/benzène 80/20 contient une huile rouge à laquelle nous avons attribué la structure VI.

Masse M/e 524 (M⁺, 2%) 468 (M⁺-2CO, 3%) 334 (MeCpMnL2⁺, 100%) 134 (MeCpMn⁺, 50%)

La dernière fraction éluée au benzène pur contient une huile rouge foncé à laquelle nous avons attribué la structure VII.

Masse M/e 562 (M⁺, 4%) 534 (M⁺CO, 1%) 334 (MeCpMnL₂⁺, 100%) 200 (L₂⁺, 80%) 134 (MeCpMn⁺, 20%)

BIBLIOGRAPHIE

[1]	A.J. Ashe III et J.C. Colburn, J. Am. Chem. Soc., 99 (1977) 8099
[2]	J. Colburn, Ph.D. Dissertation, University of Michigan (1978)
[3]	K.C. Nainan et C.T. Sears, J. Organometal. Chem., 148 (1978) C31
[4]	J. Deberitz et H. Nöth, Chem. Ber., <u>103</u> (1970) 2541 ; <u>106</u> (1973) 2222 H. Vahrenkamp et H. Nöth, Chem. Ber., <u>105</u> (1972) 1148
[5]	J. Deberitz et H. Nöth, J. Organometal. Chem., <u>49</u> (1973) 453 H. Vahrenkamp et H. Nöth, Chem. Ber., <u>106</u> (1973) 2227
[6]	M. Fraser, D.G. Holah, A.N. Hughes et B.C. Hui, J. Heterocycl. Chem., <u>9</u> (1972) 1457
[7]	H. Kanter et K. Dimroth, Tetrahedron Letters (1975) 541 ; (1975) 545
[8]	P.L. Timms, Angew. Chem. Internat. Ed. Engl., 14 (1975) 273
[9]	L.H. Simmons, P.E. Riley, R.E. Davies et J.J. Lagowski, J. Am. Chem. Soc., <u>98</u> (1976) 1044.

284

- [10] H.G. Biedermann, K. Öfele, N. Schuhbauer et J. Tajtelbaum, Angew. Chem. Internat. Ed. Engl., <u>14</u> (1975) 639
- [11] B.O. Fischer et S. Breitschaft, Chem. Ber., 99 (1966) 2213

[12] F. Mathey, Tetrahedron Letters, (1979) 1753

- [13] A.G. Ginsburg, B.D. Lavrukhin, V.N. Setkina et P.O. Okulevich
 Zh. Obshch. Khim., <u>42</u> (1972) 514 ; Chem. Abstr., <u>77</u> (1972) 81860v.
- [14] G. Märkl, Angew. Chem. Internat. Ed. Engl., 5 (1966) 846